00001 /* Licensed to the Apache Software Foundation (ASF) under one or more 00002 * contributor license agreements. See the NOTICE file distributed with 00003 * this work for additional information regarding copyright ownership. 00004 * The ASF licenses this file to You under the Apache License, Version 2.0 00005 * (the "License"); you may not use this file except in compliance with 00006 * the License. You may obtain a copy of the License at 00007 * 00008 * http://www.apache.org/licenses/LICENSE-2.0 00009 * 00010 * Unless required by applicable law or agreed to in writing, software 00011 * distributed under the License is distributed on an "AS IS" BASIS, 00012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 00013 * See the License for the specific language governing permissions and 00014 * limitations under the License. 00015 */ 00016 00017 #ifndef APR_POOLS_H 00018 #define APR_POOLS_H 00019 00020 /** 00021 * @file apr_pools.h 00022 * @brief APR memory allocation 00023 * 00024 * Resource allocation routines... 00025 * 00026 * designed so that we don't have to keep track of EVERYTHING so that 00027 * it can be explicitly freed later (a fundamentally unsound strategy --- 00028 * particularly in the presence of die()). 00029 * 00030 * Instead, we maintain pools, and allocate items (both memory and I/O 00031 * handlers) from the pools --- currently there are two, one for per 00032 * transaction info, and one for config info. When a transaction is over, 00033 * we can delete everything in the per-transaction apr_pool_t without fear, 00034 * and without thinking too hard about it either. 00035 */ 00036 00037 #include "apr.h" 00038 #include "apr_errno.h" 00039 #include "apr_general.h" /* for APR_STRINGIFY */ 00040 #define APR_WANT_MEMFUNC /**< for no good reason? */ 00041 #include "apr_want.h" 00042 00043 #ifdef __cplusplus 00044 extern "C" { 00045 #endif 00046 00047 /** 00048 * @defgroup apr_pools Memory Pool Functions 00049 * @ingroup APR 00050 * @{ 00051 */ 00052 00053 /** The fundamental pool type */ 00054 typedef struct apr_pool_t apr_pool_t; 00055 00056 00057 /** 00058 * Declaration helper macro to construct apr_foo_pool_get()s. 00059 * 00060 * This standardized macro is used by opaque (APR) data types to return 00061 * the apr_pool_t that is associated with the data type. 00062 * 00063 * APR_POOL_DECLARE_ACCESSOR() is used in a header file to declare the 00064 * accessor function. A typical usage and result would be: 00065 * <pre> 00066 * APR_POOL_DECLARE_ACCESSOR(file); 00067 * becomes: 00068 * APR_DECLARE(apr_pool_t *) apr_file_pool_get(apr_file_t *ob); 00069 * </pre> 00070 * @remark Doxygen unwraps this macro (via doxygen.conf) to provide 00071 * actual help for each specific occurance of apr_foo_pool_get. 00072 * @remark the linkage is specified for APR. It would be possible to expand 00073 * the macros to support other linkages. 00074 */ 00075 #define APR_POOL_DECLARE_ACCESSOR(type) \ 00076 APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \ 00077 (const apr_##type##_t *the##type) 00078 00079 /** 00080 * Implementation helper macro to provide apr_foo_pool_get()s. 00081 * 00082 * In the implementation, the APR_POOL_IMPLEMENT_ACCESSOR() is used to 00083 * actually define the function. It assumes the field is named "pool". 00084 */ 00085 #define APR_POOL_IMPLEMENT_ACCESSOR(type) \ 00086 APR_DECLARE(apr_pool_t *) apr_##type##_pool_get \ 00087 (const apr_##type##_t *the##type) \ 00088 { return the##type->pool; } 00089 00090 00091 /** 00092 * Pool debug levels 00093 * 00094 * <pre> 00095 * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 00096 * --------------------------------- 00097 * | | | | | | | | x | General debug code enabled (useful in 00098 * combination with --with-efence). 00099 * 00100 * | | | | | | | x | | Verbose output on stderr (report 00101 * CREATE, CLEAR, DESTROY). 00102 * 00103 * | | | | x | | | | | Verbose output on stderr (report 00104 * PALLOC, PCALLOC). 00105 * 00106 * | | | | | | x | | | Lifetime checking. On each use of a 00107 * pool, check its lifetime. If the pool 00108 * is out of scope, abort(). 00109 * In combination with the verbose flag 00110 * above, it will output LIFE in such an 00111 * event prior to aborting. 00112 * 00113 * | | | | | x | | | | Pool owner checking. On each use of a 00114 * pool, check if the current thread is the 00115 * pools owner. If not, abort(). In 00116 * combination with the verbose flag above, 00117 * it will output OWNER in such an event 00118 * prior to aborting. Use the debug 00119 * function apr_pool_owner_set() to switch 00120 * a pools ownership. 00121 * 00122 * When no debug level was specified, assume general debug mode. 00123 * If level 0 was specified, debugging is switched off 00124 * </pre> 00125 */ 00126 #if defined(APR_POOL_DEBUG) 00127 /* If APR_POOL_DEBUG is blank, we get 1; if it is a number, we get -1. */ 00128 #if (APR_POOL_DEBUG - APR_POOL_DEBUG -1 == 1) 00129 #undef APR_POOL_DEBUG 00130 #define APR_POOL_DEBUG 1 00131 #endif 00132 #else 00133 #define APR_POOL_DEBUG 0 00134 #endif 00135 00136 /** the place in the code where the particular function was called */ 00137 #define APR_POOL__FILE_LINE__ __FILE__ ":" APR_STRINGIFY(__LINE__) 00138 00139 00140 00141 /** A function that is called when allocation fails. */ 00142 typedef int (*apr_abortfunc_t)(int retcode); 00143 00144 /* 00145 * APR memory structure manipulators (pools, tables, and arrays). 00146 */ 00147 00148 /* 00149 * Initialization 00150 */ 00151 00152 /** 00153 * Setup all of the internal structures required to use pools 00154 * @remark Programs do NOT need to call this directly. APR will call this 00155 * automatically from apr_initialize. 00156 * @internal 00157 */ 00158 APR_DECLARE(apr_status_t) apr_pool_initialize(void); 00159 00160 /** 00161 * Tear down all of the internal structures required to use pools 00162 * @remark Programs do NOT need to call this directly. APR will call this 00163 * automatically from apr_terminate. 00164 * @internal 00165 */ 00166 APR_DECLARE(void) apr_pool_terminate(void); 00167 00168 00169 /* 00170 * Pool creation/destruction 00171 */ 00172 00173 #include "apr_allocator.h" 00174 00175 /** 00176 * Create a new pool. 00177 * @param newpool The pool we have just created. 00178 * @param parent The parent pool. If this is NULL, the new pool is a root 00179 * pool. If it is non-NULL, the new pool will inherit all 00180 * of its parent pool's attributes, except the apr_pool_t will 00181 * be a sub-pool. 00182 * @param abort_fn A function to use if the pool cannot allocate more memory. 00183 * @param allocator The allocator to use with the new pool. If NULL the 00184 * allocator of the parent pool will be used. 00185 */ 00186 APR_DECLARE(apr_status_t) apr_pool_create_ex(apr_pool_t **newpool, 00187 apr_pool_t *parent, 00188 apr_abortfunc_t abort_fn, 00189 apr_allocator_t *allocator); 00190 00191 /** 00192 * Debug version of apr_pool_create_ex. 00193 * @param newpool @see apr_pool_create. 00194 * @param parent @see apr_pool_create. 00195 * @param abort_fn @see apr_pool_create. 00196 * @param allocator @see apr_pool_create. 00197 * @param file_line Where the function is called from. 00198 * This is usually APR_POOL__FILE_LINE__. 00199 * @remark Only available when APR_POOL_DEBUG is defined. 00200 * Call this directly if you have you apr_pool_create_ex 00201 * calls in a wrapper function and wish to override 00202 * the file_line argument to reflect the caller of 00203 * your wrapper function. If you do not have 00204 * apr_pool_create_ex in a wrapper, trust the macro 00205 * and don't call apr_pool_create_ex_debug directly. 00206 */ 00207 APR_DECLARE(apr_status_t) apr_pool_create_ex_debug(apr_pool_t **newpool, 00208 apr_pool_t *parent, 00209 apr_abortfunc_t abort_fn, 00210 apr_allocator_t *allocator, 00211 const char *file_line); 00212 00213 #if APR_POOL_DEBUG 00214 #define apr_pool_create_ex(newpool, parent, abort_fn, allocator) \ 00215 apr_pool_create_ex_debug(newpool, parent, abort_fn, allocator, \ 00216 APR_POOL__FILE_LINE__) 00217 #endif 00218 00219 /** 00220 * Create a new pool. 00221 * @param newpool The pool we have just created. 00222 * @param parent The parent pool. If this is NULL, the new pool is a root 00223 * pool. If it is non-NULL, the new pool will inherit all 00224 * of its parent pool's attributes, except the apr_pool_t will 00225 * be a sub-pool. 00226 */ 00227 #if defined(DOXYGEN) 00228 APR_DECLARE(apr_status_t) apr_pool_create(apr_pool_t **newpool, 00229 apr_pool_t *parent); 00230 #else 00231 #if APR_POOL_DEBUG 00232 #define apr_pool_create(newpool, parent) \ 00233 apr_pool_create_ex_debug(newpool, parent, NULL, NULL, \ 00234 APR_POOL__FILE_LINE__) 00235 #else 00236 #define apr_pool_create(newpool, parent) \ 00237 apr_pool_create_ex(newpool, parent, NULL, NULL) 00238 #endif 00239 #endif 00240 00241 /** 00242 * Find the pools allocator 00243 * @param pool The pool to get the allocator from. 00244 */ 00245 APR_DECLARE(apr_allocator_t *) apr_pool_allocator_get(apr_pool_t *pool); 00246 00247 /** 00248 * Clear all memory in the pool and run all the cleanups. This also destroys all 00249 * subpools. 00250 * @param p The pool to clear 00251 * @remark This does not actually free the memory, it just allows the pool 00252 * to re-use this memory for the next allocation. 00253 * @see apr_pool_destroy() 00254 */ 00255 APR_DECLARE(void) apr_pool_clear(apr_pool_t *p); 00256 00257 /** 00258 * Debug version of apr_pool_clear. 00259 * @param p See: apr_pool_clear. 00260 * @param file_line Where the function is called from. 00261 * This is usually APR_POOL__FILE_LINE__. 00262 * @remark Only available when APR_POOL_DEBUG is defined. 00263 * Call this directly if you have you apr_pool_clear 00264 * calls in a wrapper function and wish to override 00265 * the file_line argument to reflect the caller of 00266 * your wrapper function. If you do not have 00267 * apr_pool_clear in a wrapper, trust the macro 00268 * and don't call apr_pool_destroy_clear directly. 00269 */ 00270 APR_DECLARE(void) apr_pool_clear_debug(apr_pool_t *p, 00271 const char *file_line); 00272 00273 #if APR_POOL_DEBUG 00274 #define apr_pool_clear(p) \ 00275 apr_pool_clear_debug(p, APR_POOL__FILE_LINE__) 00276 #endif 00277 00278 /** 00279 * Destroy the pool. This takes similar action as apr_pool_clear() and then 00280 * frees all the memory. 00281 * @param p The pool to destroy 00282 * @remark This will actually free the memory 00283 */ 00284 APR_DECLARE(void) apr_pool_destroy(apr_pool_t *p); 00285 00286 /** 00287 * Debug version of apr_pool_destroy. 00288 * @param p See: apr_pool_destroy. 00289 * @param file_line Where the function is called from. 00290 * This is usually APR_POOL__FILE_LINE__. 00291 * @remark Only available when APR_POOL_DEBUG is defined. 00292 * Call this directly if you have you apr_pool_destroy 00293 * calls in a wrapper function and wish to override 00294 * the file_line argument to reflect the caller of 00295 * your wrapper function. If you do not have 00296 * apr_pool_destroy in a wrapper, trust the macro 00297 * and don't call apr_pool_destroy_debug directly. 00298 */ 00299 APR_DECLARE(void) apr_pool_destroy_debug(apr_pool_t *p, 00300 const char *file_line); 00301 00302 #if APR_POOL_DEBUG 00303 #define apr_pool_destroy(p) \ 00304 apr_pool_destroy_debug(p, APR_POOL__FILE_LINE__) 00305 #endif 00306 00307 00308 /* 00309 * Memory allocation 00310 */ 00311 00312 /** 00313 * Allocate a block of memory from a pool 00314 * @param p The pool to allocate from 00315 * @param size The amount of memory to allocate 00316 * @return The allocated memory 00317 */ 00318 APR_DECLARE(void *) apr_palloc(apr_pool_t *p, apr_size_t size); 00319 00320 /** 00321 * Debug version of apr_palloc 00322 * @param p See: apr_palloc 00323 * @param size See: apr_palloc 00324 * @param file_line Where the function is called from. 00325 * This is usually APR_POOL__FILE_LINE__. 00326 * @return See: apr_palloc 00327 */ 00328 APR_DECLARE(void *) apr_palloc_debug(apr_pool_t *p, apr_size_t size, 00329 const char *file_line); 00330 00331 #if APR_POOL_DEBUG 00332 #define apr_palloc(p, size) \ 00333 apr_palloc_debug(p, size, APR_POOL__FILE_LINE__) 00334 #endif 00335 00336 /** 00337 * Allocate a block of memory from a pool and set all of the memory to 0 00338 * @param p The pool to allocate from 00339 * @param size The amount of memory to allocate 00340 * @return The allocated memory 00341 */ 00342 #if defined(DOXYGEN) 00343 APR_DECLARE(void *) apr_pcalloc(apr_pool_t *p, apr_size_t size); 00344 #elif !APR_POOL_DEBUG 00345 #define apr_pcalloc(p, size) memset(apr_palloc(p, size), 0, size) 00346 #endif 00347 00348 /** 00349 * Debug version of apr_pcalloc 00350 * @param p See: apr_pcalloc 00351 * @param size See: apr_pcalloc 00352 * @param file_line Where the function is called from. 00353 * This is usually APR_POOL__FILE_LINE__. 00354 * @return See: apr_pcalloc 00355 */ 00356 APR_DECLARE(void *) apr_pcalloc_debug(apr_pool_t *p, apr_size_t size, 00357 const char *file_line); 00358 00359 #if APR_POOL_DEBUG 00360 #define apr_pcalloc(p, size) \ 00361 apr_pcalloc_debug(p, size, APR_POOL__FILE_LINE__) 00362 #endif 00363 00364 00365 /* 00366 * Pool Properties 00367 */ 00368 00369 /** 00370 * Set the function to be called when an allocation failure occurs. 00371 * @remark If the program wants APR to exit on a memory allocation error, 00372 * then this function can be called to set the callback to use (for 00373 * performing cleanup and then exiting). If this function is not called, 00374 * then APR will return an error and expect the calling program to 00375 * deal with the error accordingly. 00376 */ 00377 APR_DECLARE(void) apr_pool_abort_set(apr_abortfunc_t abortfunc, 00378 apr_pool_t *pool); 00379 00380 /** 00381 * Get the abort function associated with the specified pool. 00382 * @param pool The pool for retrieving the abort function. 00383 * @return The abort function for the given pool. 00384 */ 00385 APR_DECLARE(apr_abortfunc_t) apr_pool_abort_get(apr_pool_t *pool); 00386 00387 /** 00388 * Get the parent pool of the specified pool. 00389 * @param pool The pool for retrieving the parent pool. 00390 * @return The parent of the given pool. 00391 */ 00392 APR_DECLARE(apr_pool_t *) apr_pool_parent_get(apr_pool_t *pool); 00393 00394 /** 00395 * Determine if pool a is an ancestor of pool b. 00396 * @param a The pool to search 00397 * @param b The pool to search for 00398 * @return True if a is an ancestor of b, NULL is considered an ancestor 00399 * of all pools. 00400 * @remark if compiled with APR_POOL_DEBUG, this function will also 00401 * return true if A is a pool which has been guaranteed by the caller 00402 * (using apr_pool_join) to have a lifetime at least as long as some 00403 * ancestor of pool B. 00404 */ 00405 APR_DECLARE(int) apr_pool_is_ancestor(apr_pool_t *a, apr_pool_t *b); 00406 00407 /** 00408 * Tag a pool (give it a name) 00409 * @param pool The pool to tag 00410 * @param tag The tag 00411 */ 00412 APR_DECLARE(void) apr_pool_tag(apr_pool_t *pool, const char *tag); 00413 00414 00415 /* 00416 * User data management 00417 */ 00418 00419 /** 00420 * Set the data associated with the current pool 00421 * @param data The user data associated with the pool. 00422 * @param key The key to use for association 00423 * @param cleanup The cleanup program to use to cleanup the data (NULL if none) 00424 * @param pool The current pool 00425 * @warning The data to be attached to the pool should have a life span 00426 * at least as long as the pool it is being attached to. 00427 * 00428 * Users of APR must take EXTREME care when choosing a key to 00429 * use for their data. It is possible to accidentally overwrite 00430 * data by choosing a key that another part of the program is using. 00431 * Therefore it is advised that steps are taken to ensure that unique 00432 * keys are used for all of the userdata objects in a particular pool 00433 * (the same key in two different pools or a pool and one of its 00434 * subpools is okay) at all times. Careful namespace prefixing of 00435 * key names is a typical way to help ensure this uniqueness. 00436 * 00437 */ 00438 APR_DECLARE(apr_status_t) apr_pool_userdata_set( 00439 const void *data, 00440 const char *key, 00441 apr_status_t (*cleanup)(void *), 00442 apr_pool_t *pool); 00443 00444 /** 00445 * Set the data associated with the current pool 00446 * @param data The user data associated with the pool. 00447 * @param key The key to use for association 00448 * @param cleanup The cleanup program to use to cleanup the data (NULL if none) 00449 * @param pool The current pool 00450 * @note same as apr_pool_userdata_set(), except that this version doesn't 00451 * make a copy of the key (this function is useful, for example, when 00452 * the key is a string literal) 00453 * @warning This should NOT be used if the key could change addresses by 00454 * any means between the apr_pool_userdata_setn() call and a 00455 * subsequent apr_pool_userdata_get() on that key, such as if a 00456 * static string is used as a userdata key in a DSO and the DSO could 00457 * be unloaded and reloaded between the _setn() and the _get(). You 00458 * MUST use apr_pool_userdata_set() in such cases. 00459 * @warning More generally, the key and the data to be attached to the 00460 * pool should have a life span at least as long as the pool itself. 00461 * 00462 */ 00463 APR_DECLARE(apr_status_t) apr_pool_userdata_setn( 00464 const void *data, 00465 const char *key, 00466 apr_status_t (*cleanup)(void *), 00467 apr_pool_t *pool); 00468 00469 /** 00470 * Return the data associated with the current pool. 00471 * @param data The user data associated with the pool. 00472 * @param key The key for the data to retrieve 00473 * @param pool The current pool. 00474 */ 00475 APR_DECLARE(apr_status_t) apr_pool_userdata_get(void **data, const char *key, 00476 apr_pool_t *pool); 00477 00478 00479 /** 00480 * @defgroup PoolCleanup Pool Cleanup Functions 00481 * 00482 * Cleanups are performed in the reverse order they were registered. That is: 00483 * Last In, First Out. A cleanup function can safely allocate memory from 00484 * the pool that is being cleaned up. It can also safely register additional 00485 * cleanups which will be run LIFO, directly after the current cleanup 00486 * terminates. Cleanups have to take caution in calling functions that 00487 * create subpools. Subpools, created during cleanup will NOT automatically 00488 * be cleaned up. In other words, cleanups are to clean up after themselves. 00489 * 00490 * @{ 00491 */ 00492 00493 /** 00494 * Register a function to be called when a pool is cleared or destroyed 00495 * @param p The pool register the cleanup with 00496 * @param data The data to pass to the cleanup function. 00497 * @param plain_cleanup The function to call when the pool is cleared 00498 * or destroyed 00499 * @param child_cleanup The function to call when a child process is about 00500 * to exec - this function is called in the child, obviously! 00501 */ 00502 APR_DECLARE(void) apr_pool_cleanup_register( 00503 apr_pool_t *p, 00504 const void *data, 00505 apr_status_t (*plain_cleanup)(void *), 00506 apr_status_t (*child_cleanup)(void *)); 00507 00508 /** 00509 * Remove a previously registered cleanup function. 00510 * 00511 * The cleanup most recently registered with @a p having the same values of 00512 * @a data and @a cleanup will be removed. 00513 * 00514 * @param p The pool to remove the cleanup from 00515 * @param data The data of the registered cleanup 00516 * @param cleanup The function to remove from cleanup 00517 * @remarks For some strange reason only the plain_cleanup is handled by this 00518 * function 00519 */ 00520 APR_DECLARE(void) apr_pool_cleanup_kill(apr_pool_t *p, const void *data, 00521 apr_status_t (*cleanup)(void *)); 00522 00523 /** 00524 * Replace the child cleanup function of a previously registered cleanup. 00525 * 00526 * The cleanup most recently registered with @a p having the same values of 00527 * @a data and @a plain_cleanup will have the registered child cleanup 00528 * function replaced with @a child_cleanup. 00529 * 00530 * @param p The pool of the registered cleanup 00531 * @param data The data of the registered cleanup 00532 * @param plain_cleanup The plain cleanup function of the registered cleanup 00533 * @param child_cleanup The function to register as the child cleanup 00534 */ 00535 APR_DECLARE(void) apr_pool_child_cleanup_set( 00536 apr_pool_t *p, 00537 const void *data, 00538 apr_status_t (*plain_cleanup)(void *), 00539 apr_status_t (*child_cleanup)(void *)); 00540 00541 /** 00542 * Run the specified cleanup function immediately and unregister it. 00543 * 00544 * The cleanup most recently registered with @a p having the same values of 00545 * @a data and @a cleanup will be removed and @a cleanup will be called 00546 * with @a data as the argument. 00547 * 00548 * @param p The pool to remove the cleanup from 00549 * @param data The data to remove from cleanup 00550 * @param cleanup The function to remove from cleanup 00551 */ 00552 APR_DECLARE(apr_status_t) apr_pool_cleanup_run( 00553 apr_pool_t *p, 00554 void *data, 00555 apr_status_t (*cleanup)(void *)); 00556 00557 /** 00558 * An empty cleanup function. 00559 * 00560 * Passed to apr_pool_cleanup_register() when no cleanup is required. 00561 * 00562 * @param data The data to cleanup, will not be used by this function. 00563 */ 00564 APR_DECLARE_NONSTD(apr_status_t) apr_pool_cleanup_null(void *data); 00565 00566 /** 00567 * Run all registered child cleanups, in preparation for an exec() 00568 * call in a forked child -- close files, etc., but *don't* flush I/O 00569 * buffers, *don't* wait for subprocesses, and *don't* free any 00570 * memory. 00571 */ 00572 APR_DECLARE(void) apr_pool_cleanup_for_exec(void); 00573 00574 /** @} */ 00575 00576 /** 00577 * @defgroup PoolDebug Pool Debugging functions. 00578 * 00579 * pools have nested lifetimes -- sub_pools are destroyed when the 00580 * parent pool is cleared. We allow certain liberties with operations 00581 * on things such as tables (and on other structures in a more general 00582 * sense) where we allow the caller to insert values into a table which 00583 * were not allocated from the table's pool. The table's data will 00584 * remain valid as long as all the pools from which its values are 00585 * allocated remain valid. 00586 * 00587 * For example, if B is a sub pool of A, and you build a table T in 00588 * pool B, then it's safe to insert data allocated in A or B into T 00589 * (because B lives at most as long as A does, and T is destroyed when 00590 * B is cleared/destroyed). On the other hand, if S is a table in 00591 * pool A, it is safe to insert data allocated in A into S, but it 00592 * is *not safe* to insert data allocated from B into S... because 00593 * B can be cleared/destroyed before A is (which would leave dangling 00594 * pointers in T's data structures). 00595 * 00596 * In general we say that it is safe to insert data into a table T 00597 * if the data is allocated in any ancestor of T's pool. This is the 00598 * basis on which the APR_POOL_DEBUG code works -- it tests these ancestor 00599 * relationships for all data inserted into tables. APR_POOL_DEBUG also 00600 * provides tools (apr_pool_find, and apr_pool_is_ancestor) for other 00601 * folks to implement similar restrictions for their own data 00602 * structures. 00603 * 00604 * However, sometimes this ancestor requirement is inconvenient -- 00605 * sometimes it's necessary to create a sub pool where the sub pool is 00606 * guaranteed to have the same lifetime as the parent pool. This is a 00607 * guarantee implemented by the *caller*, not by the pool code. That 00608 * is, the caller guarantees they won't destroy the sub pool 00609 * individually prior to destroying the parent pool. 00610 * 00611 * In this case the caller must call apr_pool_join() to indicate this 00612 * guarantee to the APR_POOL_DEBUG code. 00613 * 00614 * These functions are only implemented when #APR_POOL_DEBUG is set. 00615 * 00616 * @{ 00617 */ 00618 #if APR_POOL_DEBUG || defined(DOXYGEN) 00619 /** 00620 * Guarantee that a subpool has the same lifetime as the parent. 00621 * @param p The parent pool 00622 * @param sub The subpool 00623 */ 00624 APR_DECLARE(void) apr_pool_join(apr_pool_t *p, apr_pool_t *sub); 00625 00626 /** 00627 * Find a pool from something allocated in it. 00628 * @param mem The thing allocated in the pool 00629 * @return The pool it is allocated in 00630 */ 00631 APR_DECLARE(apr_pool_t *) apr_pool_find(const void *mem); 00632 00633 /** 00634 * Report the number of bytes currently in the pool 00635 * @param p The pool to inspect 00636 * @param recurse Recurse/include the subpools' sizes 00637 * @return The number of bytes 00638 */ 00639 APR_DECLARE(apr_size_t) apr_pool_num_bytes(apr_pool_t *p, int recurse); 00640 00641 /** 00642 * Lock a pool 00643 * @param pool The pool to lock 00644 * @param flag The flag 00645 */ 00646 APR_DECLARE(void) apr_pool_lock(apr_pool_t *pool, int flag); 00647 00648 /* @} */ 00649 00650 #else /* APR_POOL_DEBUG or DOXYGEN */ 00651 00652 #ifdef apr_pool_join 00653 #undef apr_pool_join 00654 #endif 00655 #define apr_pool_join(a,b) 00656 00657 #ifdef apr_pool_lock 00658 #undef apr_pool_lock 00659 #endif 00660 #define apr_pool_lock(pool, lock) 00661 00662 #endif /* APR_POOL_DEBUG or DOXYGEN */ 00663 00664 /** @} */ 00665 00666 #ifdef __cplusplus 00667 } 00668 #endif 00669 00670 #endif /* !APR_POOLS_H */